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Optical pulse dynamics for quantum-dot logic operations in a photonic-crystal waveguide
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We numerically demonstrate all-optical logic operations with quantum dots (QDs) embedded in a bimodal
photonic-crystal waveguide using Maxwell-Bloch equations in a slowly varying envelope approximation (SVEA).
The two-level QD excitation level is controlled by one or more femtojoule optical driving pulses passing through
the waveguide. Specific logic operations depend on the relative pulse strengths and their detunings from an
inhomogeneouslly broadened (about 1% for QD transitions centered at 1.5 μm) QD transition. This excitation
controlled two-level medium then determines passage of subsequent probe optical pulses. Envelope equations for
electromagnetic waves in the linear dispersion and cutoff waveguide modes are derived to simplify solution of
the coupled Maxwell-Bloch equations in the waveguide. These determine the quantum mechanical evolution of
the QD excitation and its polarization, driven by classical electromagnetic (EM) pulses near a sharp discontinuity
in the EM density of states of the bimodal waveguide. Different configurations of the driving pulses lead to
distinctive relations between driving pulse strength and probe pulse passage, representing all-optical logic AND,
OR, and NOT operations. Simulation results demonstrate that such operations can be done on picosecond time
scales and within a waveguide length of about 10 μm in a photonic-band-gap (PBG) optical microchip.
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I. INTRODUCTION

Photonic-band-gap (PBG) materials are a special class of
photonic crystals (PCs) that facilitate light localization [1,2]
and control of spontaneous emission [3,4] from atoms. The
ability to control light on a microscopic level with engi-
neered PC defect structures make PBG materials a versatile
platform for micro- and nanophotonic devices. PBG-based
devices can have significantly better performance than their
conventional counterparts, due to strong light confinement on
the subwavelength scale. The small PC defect mode volume
leads to extremely strong optical fields at very low power
levels for exceptional nonlinear optical effects. Moreover,
PBG waveguides enable subwavelength scale circuits for
diffractionless guidance of light on a chip in three dimensions
[5–9].

In addition to strong field confinement effects, PBG mate-
rials benefit from their unprecedented capability of modifying
the vacuum electromagnetic (EM) density of states (DOS) over
extended volumes and spectral ranges. It has been recently
shown that discontinuous local DOS inside photonic crystals
can bring novel strong coupling dynamics, especially when
the interaction time scale �t (e.g., pulse duration, observation
time, etc.) is comparable to or much longer than the relaxation
time scale 1/�. For example, in the steady state regime where
�t � 1/�, a discontinuous jump from low to high local DOS
at a cutoff frequency in a bimodal waveguide enables switching
of two-level quantum dot (QD) populations from below to
above inversion using a continuous wave (CW) driving laser
field [10–12]. This is due to the imbalance of radiative emission
rates among the laser-induced Mollow sidebands that are made
to straddle the LDOS discontinuity.

The steady state population switching turns into a more
dramatic dynamic population switching [13,14] for a coher-
ent optical pulse with duration comparable with radiative
relaxation rates (�t ∼ 1/�). Near the LDOS discontinuity,
radiative relaxation rates of the driven QD become highly
field dependent. This enables control of radiative relaxation

rates through field strength, and dynamical alteration of the
interaction regime (from coherent transient to field-enhanced
decay and vice versa) within a single pulse duration. In this
mixed interaction time scenario, population inversion can be
activated and deactivated by picosecond pulse trains detuned
below and above the atomic resonance, respectively.

This dynamic switching effect forms the basis for all-optical
switching proposed earlier [13,14]. Picosecond (control) pulse
trains are sent through the linear dispersion mode of a
PC bimodal waveguide embedded with two-level QDs. The
other waveguide mode has a cutoff below the QD transition
and control pulse frequencies, creating a discontinuous DOS
jump. The QD populations can be switched to above and
below inversion level by control pulses detuned below and
above QD transition level, respectively. The pulse-controlled
QD population then determines whether subsequent signal
pulses can pass through the waveguide (with QDs above
inversion) or not (with QDs below inversion). Furthermore, as
demonstrated previously [15], an additional, weaker driving
pulse (signal pulse) introduces rich modulation effects in the
final QD inversion when its frequency coincides with the QD
Mollow sidebands induced by the control (holding) pulse.
This bichromatic modulation effect enables a complete set of
all-optical logic operations [15]. Figure 1 provides a schematic
illustration of a possible PBG waveguide structure and the
corresponding photonic band spectrum for the proposed all-
optical switching and logic operations.

Switching and logic devices were modeled earlier [13–15]
as a point in space, involving only the optical Bloch equation
but with pulses imposed as prescribed external fields at the
QD location. In this case, only temporal evolution of the
QD population was simulated. Alternatively, a simple model
of optical switching can be obtained [17,18] by treating the
response of QDs distributed in a PC waveguide as a steady state
nonlinear susceptibility. However, the complete temporal and
spatial evolution of the system requires solution of Maxwell’s
equation governing the pulse propagation together with the
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FIG. 1. (Color online) (a) Schematic structure and (b) spectrum of
2D-3D PBG waveguides [5,16] embedded with QDs for application
in all-optical switching and logic.

optical Bloch equation for the QD. A self-consistent solution
of the Maxwell-Bloch equations using a full finite-difference-
time-domain (FDTD) simulation has been presented [19] in
idealized one-dimensional (1D) and two-dimensional (2D)
photonic-crystal structures. In this model, spontaneous emis-
sion dynamics is determined numerically from solution of
Maxwell’s equations in the vicinity of the light emitter. This
dynamics depends specifically on the frequency of emission
and the detailed dielectric geometry of the photonic crystal.
There is no requirement to introduce radiative decay parame-
ters by hand as in earlier studies [13–15]. This self-consistent
theory captures stimulated emission and coherent feedback
effects of the atomic Mollow sidebands, leading to remarkable
high-contrast QD population switching. This occurs with only
modest jump discontinuities in the electromagnetic LDOS,
compared to simulations of the Bloch equation alone [13,14].
However, in Ref. [19] all QDs are concentrated in one spatial
plane that cuts the waveguide. This study focused mainly on
the temporal evolution of the QD population rather than pulse
reshaping.

In the present paper we study the evolution of picosecond
laser pulses along the waveguide and the resulting spatial
population profile of QDs evenly distributed along the waveg-
uide. Intense computational power is required for a full
numerical solution of the Maxwell-Bloch equation in a two-
or three-dimensional PBG waveguide [19]. In our paper we

simplify modeling of the electromagnetic wave propagation
by abstracting the key properties of the PBG waveguide modes
and their interaction with QDs using a slowly varying envelope
approximation (SVEA) [20–22]. Envelope equations of the
electromagnetic waves in the linear dispersion and cutoff
modes are derived with the PBG waveguide treated as an
effective one-dimensional system. The envelope equations
contain fitting parameters to match the dispersion curves
of a realistic PBG waveguide structure. The input laser
field induces QD dipole oscillations, which lead to radiative
emission into both the linear dispersion mode and the cutoff
mode. The radiation into the linear dispersion mode leads to
backreaction on the input laser fields and modifies the pulse
temporal profiles. Simultaneously, radiation into the cutoff
mode provides feedback that drives the QDs. The envelop
function of radiation in the cutoff mode satisfies a nonlinear
Schrödinger equation derived using a quadratic approximation
of the dispersion curve near the cutoff point [21,22]. The
strong interaction between the QDs and the linear and cutoff
modes occurs close to the DOS discontinuity caused by the
cutoff. The evolution of QD populations and dipoles under this
interaction is described by an atomic Bloch vector driven by
fields at two distinct frequencies in structured vacuum [15]. It is
based on this set of coupled Maxwell-Bloch equations that the
temporal and spatial evolution of QD populations and driving
pulses are simulated. For realistic results, inhomogeneous
broadening effects of the QD transition frequencies (about
1% for QD transitions centered at 1.5 μm) is also included
in our simulations. Unlike the fully self-consistent Maxwell-
Bloch theory [19] in which radiative decay is determined by
Maxwell’s equations, we simplify the problem by inserting
radiative decay rates by hand into the Bloch equations of the
quantum dots. As a result, our model neglects non-Markovian
feedback effects [19] in the radiation process.

In Sec. II we derive the envelop equations of the linear
dispersion and cutoff modes, coupled with the structured
vacuum QD Bloch equations. In Sec. III, as a consistency
check, we recapture the well known phenomenon of self-
induced transparency. This is followed by simulation results
of an all-optical switching device and all-optical AND, OR, and
NOT logic devices embedded in a 10 μm length segment of the
PBG waveguide. The possibility of soliton formation inside
the waveguide over longer distances is also explored.

II. COUPLED MAXWELL-BLOCH EQUATIONS

We first consider the propagation of picosecond laser
pulses along the linear dispersion mode of a PBG bimodal
waveguide. For all-optical switching [13,14], these are control
laser pulses, while for the all-optical logic, these are holding
and signal pulses. The probe pulses in both the switching
and logic devices propagate in the linear dispersion mode.
In addition to the linear dispersion mode, the waveguide has
a cutoff mode with cutoff frequency ωC slightly below the
laser carrier frequencies ωL1,L2 The waveguide is embedded
with a distributed collection of inhomogeneously broadened
two-level quantum dots. We denote the transition frequency
of the mth quantum dot as ωAm

. This frequency obeys a
Gaussian distribution with mean ωA (near resonant with ωL),
with standard deviation σA.
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The quantum dots are simultaneously driven by external
picosecond laser pulses and internal radiation fields emitted
by the dots into the linear and cutoff modes. The dots
are also coupled to the structured electromagnetic vacuum,
characterized by a sharp local density of states (LDOS) jump at
ωC due to the mode cutoff. This LDOS jump is modeled by two
radiative decay parameters for the high and low LDOS regions,
respectively. We assume the QDs are independent of each
other and ignore any direct dipole-dipole interactions between
them. This allows the evolution of each QD to be described
individually. The individual responses are then summed up to
form the net polarization field. The radiation field, including
both the input laser pulses and dot emitted fields (in the
linear and cutoff mode), propagate according to Maxwell’s
equations inside the waveguide. The Bloch equation and
Maxwell equation are coupled through dipolar interactions
between the dots and the total radiation field. Together they
govern the complete semiclassical nonlinear dynamics of the
all-optical switching and logic devices.

A. Bloch equations for two-level QDs

Assuming independent quantum dots, we model the evo-
lution of each dot (a two-level system) interacting with the
laser pulses and cumulative radiated field of the dots in the
structured EM vacuum. The aggregate dipole of all quantum
dots placed along the waveguide, each with a distinct transition
frequency sampled from a Gaussian distribution, is used to
form the macroscopic polarization field in the waveguide.
This oscillating polarization field acts as the source of dipolar
radiation into the waveguide modes. This radiation source term
is incorporated into the Maxwell equation in the next section.

Consider a two-level quantum dot with transition fre-
quency ωAm

detuned slightly from a step discontinuity in the
electromagnetic density of states at frequency ωC (provided
by the waveguide cutoff mode), interacting simultaneously
with electromagnetic fields in a linear dispersion mode with
a strong component EL1 (t) and a weak component EL2 (t),
as well as another weak field EC(t) in a waveguide cutoff
mode. The central frequencies of these fields are ωL1,L2,C

and their slowly varying envelop functions are denoted as
ẼL1,L2,C(t), respectively. In addition, the two-level system
interacts with a smooth featureless nonradiative reservoir that
is statistically independent from the photonic reservoir. This
coupling to phonons causes dephasing of the atomic dipole.
The contributions of the two reservoirs to the evolution of the
reduced density operator of the two-level system are assumed
to factorize and are treated separately.

We assume the following form of the EM waves in the
linear and cutoff mode:

EL1,L2 (x,t) = ẼL1,L2 (x,t)e−i(ωL1 ,L2 t−kL1 ,L2 x) + c.c.,
(1)

EC(x,t) = ẼC(x,t)(e−i(ωCt−kCx) + e−i(ωCt+kCx)) + c.c.

In general, both ẼL1,L2 (x,t) and ẼC(x,t) can be written
as

ẼL1,L2 (x,t) = |ẼL1,L2 (x,t)|e−iφ̃L1 ,L2 ,
(2)

ẼC(x,t) = |ẼC(x,t)|e−iφ̃C .

The Hamiltonian of a driven single QD located at x (in the
absence of phonon coupling) consists of three parts:

H = HS + HR + HSR. (3)

HS is the Hamiltonian of the field-driven atom, HR

describes the electromagnetic reservoir, and HSR is the atom-
reservoir coupling. In the bare atomic basis (ground state
|1〉 and excited state |2〉), this Hamiltonian [in rotating wave
approximation (RWA) in the linear dispersion mode rotating
frame e−i(ωL1 t−kL1 x)] takes the form

HS = 1
2h̄�AmL1σ

L1
3 − h̄(εL1 + εL2 + εC)σL1

21

− h̄(ε†L1
+ ε

†
L2

+ ε
†
C)σL1

12 ,
(4)

HR =
∑

λ

h̄ωλa
†
λaλ,

HSR = ih̄
∑

λ

gλ

(
a
†
λσ

L1
12 − aλσ

L1
21

)
.

Here the time-dependent Rabi frequencies of the linear and
cutoff modes are defined as

εL1 = ε̃L1e
−iφ̃L1 = |ẼL1 |μ

h̄
e−iφ̃L1 ,

εL2 = ε̃L2e
−iφL2 = |ẼL2 |μ

h̄
e−iφL2 ,

εC = ε̃C(e−iφC,1 + e−iφC,−1 ) = |ẼC |μ
h̄

(e−iφC,1 + e−iφC,−1 ),

(5)

where φL2 = δωL2 t − δkL2x + φ̃L2 , φC,1 = δωCt − δkCx +
φ̃C , and φC,−1 = δωCt + (kC + kL)x + φ̃C , with δωL2 =
ωL2 − ωL1 , δkL2 = kL2 − kL1 , δωC = ωC − ωL1 , and δkC =
kC − kL1 . We assume the dipole moment transition element μ

is real, and that the dipole is parallel to the pulse polarization
for simplicity. a

†
λ and aλ are the creation and annihilation

operators of mode λ of the electromagnetic reservoir with
frequency ωλ. We define the detunings �AmL1 = ωAm

− ωL1 ,
�λ = ωλ − ωL1 , and define the bare atomic operators in
the linear dispersion mode rotating frame e−i(ωL1 t−kL1 x) as
σ

L1
ij = |i〉〈j | (i,j = 1, 2) for the dipoles, σL1

3 = σ
L1
22 − σ

L1
11 for

the population inversion, as well as in-phase and in-quadrature
parts of the dipole moment:

σ
L1
1 = σ

L1
12 + σ

L1
21 , σ

L1
2 = i

(
σ

L1
12 − σ

L1
21

)
. (6)

The expectation values of the atomic operators are defined
as uL1 = 〈σL1

1 〉, vL1 = 〈σL1
2 〉, and wL1 = 〈σL1

3 〉. As a result of
our independent QD assumption, each single QD is described
separately by a set of Bloch equations. We incorporate inho-
mogeneous broadening by assuming a Gaussian distribution
in dot transition frequency. For every spatial point along
the waveguide, we calculate the average dipole moment and
population uL1 , vL1 , and wL1 by dividing the inhomogeneous
distribution into a set of many equally separated frequency
intervals. Each interval is assumed to support a distinct
dot detuning �AmL1 at the center of the intervals. All QDs
within this region are described by a representative Bloch
vector whose dynamics obeys the set of Bloch equations
with the central detuning �AmL1 . Finally, uL1 , vL1 , and wL1

are calculated as weighted averages of these representative
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Bloch vectors, with their weights equaling the probability of a
QD transition frequency falling within each of the frequency
intervals.

1. Bloch equation for all-optical switching

Figure 2 shows a schematic spectral model of our proposed
all-optical switching device. For simulation of all-optical
switching we set EL2 = 0, and assume that the cutoff field
is generally much weaker than the laser field EL1 in the linear
dispersion mode. To simplify notations we denote EL1 =
EL, ωL1 = ωL, kL1 = kL, and similarly replace all relevant
subscripts and superscripts of L1 with L. In this configuration,
two electromagnetic fields drive the QD evolution near the
LDOS discontinuity. According to Ref. [15], if one of the
field components (the cutoff mode) is much weaker than the
other (the linear dispersion mode) |εC | � |εL|, then the QD
fluorescence spectrum is confined in the three regions ωL and
ωL ± 2
L of the central, left, and right Mollow sidebands
of the linear dispersion mode (
L is the generalized Rabi
frequency of the linear dispersion mode EL). In this situation,
the QD master equation and resulting Bloch equation are
derived in the dressed state basis of the linear dispersion mode
EL. The cutoff mode field is a time dependent perturbation
on the singly driven dressed states. This assumption leads to
the following time-dependent dressed states |1̃〉L and |2̃〉L that
diagonalizes HS ,

|1̃〉L = cL(t)|1〉 + sL(t)|2〉, |2̃〉L = −sL(t)|1〉 + cL(t)|2〉,
(7)

where

c2
L(t) = {1 + �AmL/[2
LC(t)]}/2,

s2
L(t) = {1 − �AmL/[2
LC(t)]}/2, (8)


LC(t) = [(
�AmL/2

)2 + |εL + εC |2]1/2
.

The dressed state atomic operators are defined similarly as
their bare state counterparts:

R̃L
ij = |ĩ〉L〈j̃ |L (i,j = 1, 2), R̃L

3 = R̃L
22 − R̃L

11.

By working in the dressed state basis Eq. (7), the Bloch
equations of the mth single QD at position x near the LDOS
discontinuity, doubly driven by fields of both the linear and
the cutoff modes, can be derived in the rotating frame of

FIG. 2. (Color online) Schematic spectral model of an all-optical
switching device. (a) Red-shifted control pulses excite the two-level
QD medium to allow passage of subsequent signal pulses. (b) Blue-
shifted control pulses deexcite the two-level QD medium to forbid
passage of subsequent signal pulses.

e−i(ωLt−kLx) [15]. When transferred back to the bare atomic
basis, the Bloch equations have the form Ref. [15]

u̇L = −�AmLvL − 1

T L
u

uL + VL

− 2[ε̃L sin φ̃L + ε̃C(sin φC,1 + sin φC,−1)]wL,

v̇L = �AmLuL − 1

T L
v

vL

+ 2[ε̃L cos φ̃L + ε̃C(cos φC,1 + cos φC,−1)]wL, (9)

ẇL = − 1

T L
w

(wL + 1) + VLuL

− 2[ε̃L cos φ̃L + ε̃C(cos φC,1 + cos φC,−1)]vL

+ 2[ε̃L sin φ̃L + ε̃C(sin φC,1 + sin φC,−1)]uL.

Here 1/T L
u,v = c2

L(1+s2
L)γ++s4

Lγ−+4γp

2 ∓ c2
Ls2

L(γ+−γ−)
2 and

1/T L
w = c2

L(1 + s2
L)γ+ + s4

Lγ− are field dependent relaxation
rates. γ− and γ+ are the radiative decay rates at the high and
low DOS regions, respectively, and γp is the nonradiative
(phonon) dephasing rate. VL = (γ+ − γ−)cLs3

L is a “vacuum
structure” term. T L

u and T L
v reduce to the transverse dephasing

time, and T L
w reduces to the longitudinal dephasing time in

ordinary vacuum if we set γ+ = γ−.

2. Bloch equation for all-optical logic operations

Figure 3 shows a schematic spectral model of our proposed
all-optical logic devices. For all-optical logic operations, two
distinct wavelength channels of pulses propagate in the linear
dispersion mode. We designate EL1 = Eh for the holding pulse
channel, while EL2 = ES is for the signal pulse channel. To
simplify notations we also denote ωL1 = ωh, ωL2 = ωS , kL1 =
kh, kL2 = kS , and similarly replace all relevant subscripts and
superscripts of L1 and L2 with h and S, respectively. In this
configuration, the QD is driven by three electromagnetic fields
simultaneously, namely, the holding, signal, and cutoff mode
fields. The fluorescence spectrum of QDs driven by three
beams is more complex than that of only two driving fields, and
the incoherent terms of the Bloch equation are not as simple as
in Eq. (9). However (as confirmed in the following simulations)
the QD radiation into the cutoff mode is much weaker than
the other driving fields in the linear dispersion mode. In this
situation, when deriving the incoherent part of the Bloch
equation, we ignore the influence of the cutoff mode field
on the QD dressed state. In other words, we assume the QD
fluorescence spectrum is determined entirely by the holding
and signal fields. If we further require that the signal field to
be much weaker than the holding field |εS | � |εh|, then the
fluorescence spectrum is confined in the three regions ωh and
ωh ± 2
h of the central, left, and right Mollow sidebands of
the holding pulse (
h is the generalized Rabi frequency of the
holding pulse Eh). We treat the signal field as a time-dependent
perturbation on the singly driven dressed states of the holding
field. This assumption leads to the following time-dependent
dressed states |1̃〉h and |2̃〉h,

|1̃〉h = ch(t)|1〉 + sh(t)|2〉,
(10)

|2̃〉h = −sh(t)|1〉 + ch(t)|2〉,
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FIG. 3. (Color online) Spectral configuration of the logic (a) AND,
OR, and (b) NOT devices.

where

c2
h(t) = {

1 + �Amh/[2
hS(t)]
}
/2,

s2
h(t) = {

1 − �Amh/[2
hS(t)]
}
/2, (11)


hS(t) = {(
�Amh/2

)2 + |εh + εS |2
}1/2

.

The dressed state atomic operators are defined similarly as
their bare state counterparts:

R̃h
ij = |ĩ〉h〈j̃ |h (i,j = 1, 2), R̃h

3 = R̃h
22 − R̃h

11.

By working in the dressed state basis Eq. (10), the Bloch
equations in the rotating frame of e−i(ωht−khx) of the mth QD
at position x, driven by fields of the linear and the cutoff
modes, can be derived [15]. To simplify the derivation of the
incoherent part of the Bloch equation, we ignored the effect
of the cutoff mode on the dressed state spectrum. However,
the coherent driving terms of the cutoff mode EM field are
easily evaluated (as cross products of the Bloch vector with the
cutoff mode torque vector). Since these terms may influence
the coherent Bloch dynamics, we explicitly include them in
the Bloch equation. When transformed back to the bare atomic
basis, the Bloch equations become

u̇h = −�Amhvh − 1

Tu

uh + V

− 2[ε̃h sin φ̃h + ε̃S sin φS +ε̃C(sin φC,1+sin φC,−1)]wh,

v̇h = �Amhuh − 1

Tv

vh

+ 2[ε̃h cos φ̃h + ε̃S cos φS +ε̃C(cos φC,1+cos φC,−1)]wh,

ẇh = − 1

Tw

(wh + 1) + V uh

− 2[ε̃h cos φ̃h+ε̃S cos φS +ε̃C(cos φC,1 + cos φC,−1)]vh

+ 2[ε̃h sin φ̃h+ε̃S sin φS + ε̃C(sin φC,1 + sin φC,−1)]uh.

(12)

Here 1/T h
u,v = c2

h(1+s2
h)γ++s4

hγ−+4γp

2 ∓ c2
hs

2
h(γ+−γ−)

2 ,1/T h
w =

c2
h(1 + s2

h)γ+ + s4
hγ−, and Vh = (γ+ − γ−)chs

3
h.

B. Envelope equations of the waveguide modes

The propagation of electromagnetic fields in the waveguide
is described by the Maxwell’s equation inside the photonic
crystal with the polarization field P (x,t) of embedded two-
level QDs acting as the source term. To fully describe the
pulse propagation inside the waveguide, a detailed modeling
of the PBG waveguide dielectric structure in 3D is required.

However, in this article we abstract the key properties of the
PBG waveguide to simplify the problem. In the following
we reduce the waveguide to a one-dimensional system and
derive the electromagnetic envelope equation in the linear and
cutoff modes, respectively. The envelope equations contain
fitting parameters that allow an approximate description of the
dispersion curves of a realistic 3D-PBG waveguide structure.

In reducing the 3D problem into 1D, we approximate the
actual transverse field distribution with a simplified one. We
assume the field is uniform along the cross-sectional directions
of the waveguide and that it vanishes outside the waveguide.
This corresponds to assuming a uniform overlap of the field
with all QDs embedded in a given cross-sectional plane of
the waveguide. For a typical bimodal waveguide in a 2D-
3D PBG heterostructure, using light with 1500 nm vacuum
wavelength, the lattice constant of the PC is a ≈ 600 nm, and
the cross-sectional area of the waveguide is approximately
(a/3) × (3a) = a2 [16].

1. Envelope equation of the linear dispersion EM modes

We model the input pulses in the linear dispersion mode
of the waveguide as propagating through an effective one-
dimensional system, obeying the Maxwell equation with a
source term coming from the polarization field P of the
embedded two-level QDs,

∂2EL1,L2

∂x2
− εeff(x)

c2

∂2EL1,L2

∂t2
= 4π

c2

∂2P

∂t2
. (13)

Here εeff(x) is the effective dielectric structure giving rise to
the linear dispersion curve being modeled around ωL1,L2 .

As discussed previously, in the static frame, we assume the
electric field of the linear dispersion mode has the form

EL1,L2 = ẼL1,L2 (x,t)e−i(ωL1 ,L2 t−kL1 ,L2 x) + c.c. (14)

Here ωL1,L2 and kL1,L2 are the carrier frequency and wave
vector of the propagating pulses. Although the dispersion curve
is approximately linear around ωL1,L2 , the group velocity vg

characterizing the speed of the envelope function ẼL1,L2 (x,t)
(in the absence of embedded QDs) need not coincide with the
phase velocity vp = ωL1/kL1 = ωL2/kL2 . ωL1,L2 , kL1,L2 , and
vg remain independent parameters determined by the detailed
photonic-crystal waveguide architecture.

In the static frame, the polarization P of the QD medium
can be expressed as

P (x,t) = μn(〈σ12〉avg + c.c.)

= μn
(〈
σ̃

L1,L2
12

〉
e−i(ωL1 ,L2 t−kL1 ,L2 x) + c.c.

)
, (15)

where 〈σ12〉avg is the average expected value of the QD dipole in
the static frame. 〈σ̃ L1,L2

12 〉 are the envelope functions of 〈σ12〉avg

when viewed from the e−i(ωL1 ,L2 t−kL1 ,L2 x) rotating frame. μ is
the single QD dipole transition matrix element and n is the
number density of QDs. Since the QDs interact nonlinearly
with the linear dispersion and cutoff modes simultaneously,
〈σ12〉avg has fast oscillating components at both ωL1,L2 and ωC

frequencies, as well as other frequency components (e.g., Rabi
frequency components and higher order harmonics, etc.).

To estimate the QD number density, following Ref. [17],
we assume the average QD has a pyramidal shape with base
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15 nm by 15 nm, and height 7 nm. Assuming the QDs are
spaced 5 nm away from each other in all three dimensions, then
their number density is roughly n = 2 × 105 μm−3, which will
be used for all the simulations presented below. The dipole
moment matrix element of the dots are chosen to be μ =
3.33 × 10−22 C μm (100 D), which has been demonstrated in
Refs. [23–25].

The envelop function 〈σ̃ L1
12 〉 can be expressed in terms of

the average Bloch vector ρ = (uL1 ,vL1 ,wL1 ) [obeying Eq. (9)
or (12)]:

〈
σ̃

L1
12

〉 = (uL1 − ivL1 )/2. (16)

The envelop function 〈σ̃ L2
12 〉, on the other hand, is given by

〈
σ̃

L2
12

〉 = uL1 − ivL1

2e−i(δωL2 t−δkL2 x) . (17)

We assume that the electric field in the linear dispersion
mode is of the form Eq. (14) and the polarization of the
QD medium is of the form Eq. (15). The envelope function
ẼL1,L2 is slowly varying both temporarily and spatially, and
propagates forward with speed vg . Therefore we model the
movement of ẼL1,L2 with an effective homogeneous medium
whose dielectric constant produces the group velocity vg

(slope of the dispersion curve). On the other hand, the phase
velocity is independently modeled through the phase factor
e−i(ωL1 ,L2 t−kL1 ,L2 x) by the actual frequency ωL1,L2 and wave
vector kL1,L2 of the pulses. vg , ωL1,L2 , and kL1,L2 forms the
set of independent parameters that we use to model the linear
dispersion mode in which our pulses propagate. Then by
making the slowly varying envelop approximation, we obtain
the following wave equations for the envelope function (see
Appendix A for details):

∂ẼL1,L2

∂x
+ 1

vg

∂ẼL1,L2

∂t
+ �L

vg

ẼL1,L2 = 2iπμnωL1,L2vg

c2

〈
σ̃

L1,L2
12

〉
.

(18)

Here a broad band linear loss rate �L is included as well.
This �L can describe either additional absorption losses or
decay of the optical mode from a finite segment of the PBG
waveguide.

2. Envelope equation of the cutoff mode

Near ωC , the cutoff mode dispersion curve can be approx-
imated by a parabola whose curvature describes the photon
effective mass. Following the approach of Refs. [21] and
[22], we model the cutoff mode as the lower band edge of
a one-dimensional photonic crystal with periodic dielectric
constant ε(x) = ε + �ε cos(2kCx), where ε is the average
dielectric constant and �ε is the spatial dielectric modulation
amplitude at wave vector kC . As with the linear dispersion
mode, the Maxwell equation for EM wave EC(x,t) in this
mode also has a source term coming from the polarization P

of the embedded two-level QDs:

∂2EC

∂x2
− ε(x)

c2

∂2EC

∂t2
= 4π

c2

∂2P

∂t2
. (19)

At the immediate vicinity of ωC , the electric field EC(x,t)
of the cutoff mode can be written in terms of its envelope
function ẼC(x,t) as

EC(x,t) = ẼC(x,t)(e−i(ωCt−kCx) + e−i(ωCt+kCx)) + c.c. (20)

By expressing the dispersion curve of this one-dimensional
system in a quadratic form near the lower band edge (with
frequency and wave vectors scaled with ω−1

C and k−1
C ,

respectively) [21,22], we obtain the simplified dispersion for
a negative effective mass particle:

(ω − ωC)/ωC = − 1

2β

(
q − kC

kC

)2

+ higher order terms.

(21)

Here β = �ε/4ε. Following the approach of Refs. [21] and
[22], we obtain the following Schrödinger-like equation for
ẼC(x,t) in the effective mass approximation:

i
∂ẼC

∂t
− 1

2β

∂2ẼC

∂x2
+ (β + i�C)ẼC + 2πnμ

ε

〈
σ̃ C

12

〉 = 0. (22)

Here the envelope equation 〈σ̃ C
12〉 of the QD polarization,when

viewed from the cutoff mode frame, can be expressed as (see
Appendix B)

〈
σ̃ C

12

〉 = uL1 − ivL1

2(e−i(δωCt−δkCx) + e−i[δωC+(kC+kL1 )x])
. (23)

As in Eq. (18), we introduce another decay parameter �C

describing either intrinsic absorption loss or leakage of the
optical energy from a finite length segment of the PBG
waveguide.

III. SIMULATION OF PULSE PROPAGATION

For numerical simplicity we rewrite the linear dispersion
field envelope equation (18) in terms of the linear dispersion
mode Rabi frequency by multiplying the equation by μ/h̄, and
converting to international SI unit:

∂εL1,L2

∂x
+ 1

vg

∂εL1,L2

∂t
+ �L

vg

εL1,L2 = i
nωL1,L2μ

2

2εvgε0h̄

〈
σ̃

L1,L2
12

〉
.

(24)

The cutoff mode envelope Eq. (22) is treated similarly.
However, the cutoff mode Rabi frequency defined in Eq. (5) is
expressed in the linear dispersion mode rotating frame, while
Eq. (22) is derived in the frame of the cutoff mode. Therefore,
we define ε′

C = μẼC/h̄ = μ|ẼC |e−iφC /h̄ as Rabi frequency in
the cutoff mode frame, so that (also in SI units)

i
∂ε′

C

∂t
− B

∂2ε′
C

∂x2
+

[
1

2B

(
ωC

kC

)2

+ i�C

]
ε′
C

+ nωCμ2

2ε0εh̄

〈
σ̃ C

12

〉 = 0. (25)

Here B = ωC

2βk2
C

is the coefficient of the quadratic term in the

dispersion relation (21) when expressed in unscaled form

(ω − ωC) = −B(q − kC)2 + higher order terms. (26)
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εL1,L2 and ε′
C that appear in Eqs. (24) and (25) are in

general complex, and have the same dimension as the field Rabi
frequency variables ε̃L1,L2,C appearing in the Bloch equation
(9) or (12). These variables are related as

ε̃L1,L2 = |εL1,L2 |, ε̃C = |ε′
C |, φ̃L1 = −Arg(εL1 ),

φL2 = δωL2 t − δkL2x − Arg(εL2 ),
(27)

φC,1 = δωCt − δkCx − Arg(ε′
C),

φC,−1 = δωCt + (kC + kL)x − Arg(ε′
C),

where Arg(x) is the angle of a complex quantity x. Equation
(9) (for optical switching) or (12) (for optical logic), (16), (17),
(23), (24), (25), and (27) form the closed set of equations for
numerical simulation of pulse propagation inside the bimodal
PBG waveguide.

We assume the input pulse enters the linear dispersion mode
of the waveguide at time t = 0 through x = 0, and propagates
along the positive x direction. The boundary conditions for
the linear dispersion mode envelope equation (24) at x = 0
are therefore specified as the external input pulse envelope
functions ẼL1,L2 (x = 0,t) = ẼL1,L2 (t). These are assumed
to be Gaussian pulses in this article. Neumann boundary
conditions [26] are specified for the cutoff mode envelope
equation (25) at both the x = 0 and x = xmax boundaries. The
quantum dots inside the waveguide have an initial Bloch vector
profile ρ(x,t = 0) = ρ0(x), and no initial electromagnetic
field exists inside either the linear or the cutoff mode of the
waveguide [ẼL1,L2,C(x,t = 0) = 0].

Finite difference schemes are employed to solve the cou-
pled Maxwell-Bloch equations, including implicit Euler [26]
scheme for the linear dispersion mode envelope (24), Crank
Nicolson scheme [26] for the cutoff mode envelope (25), and
explicit Euler [26] for the Bloch equations (9) and (12). The
dipole moment averages uL and vL that appear in Eqs. (16),
(17), and (23) are calculated by dividing the frequency region
[ωA − NσσA,ωA + NσσA] of the QD transition frequency
distribution (here σA is the standard deviation of the Gaussian
QD transition frequency distribution, and Nσ represents the
number of standard deviations included in the simulation)
into a number NA (typically NA = 20 in our simulation) of
equally spaced narrow frequency regions [ωAl

,ωAl+1 ] (l =
1,2, . . . ,NA, and ωA1 = ωA − Nσ σA, ωANA+1 = ωA + NσσA).
Each frequency interval corresponds to a distinct, represen-
tative dot transition frequency ωAm

= (ωAl
+ ωAl+1 )/2 at the

center of this region. All QDs within this region are then
described by the representative Bloch vector whose dynamics
obey the set of Bloch equations (9) or (12), at transition
frequency detuning �AmL1 = ωAm

− ωL1 . uL1 , vL1 , and wL1 are
then taken as the weighted averages of these NA representative
Bloch vectors, with the weights being the probability of the
QD transition frequencies falling within the corresponding
frequency region [ωAl

,ωAl+1 ]. For notational simplicity we
denote uL1 , vL1 , and wL1 as u, v, and w from now on.

A. Self-induced transparency in an unstructured vacuum

As a consistency check of our numerical scheme, we
reproduce the well known results of self-induced transparency
(SIT) [27] in this section.

Self-induced transparency occurs when an intense coherent
electromagnetic pulse propagates inside a resonant absorbing
medium with little or no attenuation, in the form of a stable
soliton. It happens when the pulse duration is much shorter
than the inverse inhomogeneous broadening linewidth of the
medium and the accumulated pulse strength satisfies certain
conditions [27]. We define the area of the input laser pulse
EL(x,t) at x as

θL(x) = 2
∫ ∞

−∞
εL(x,t)dt. (28)

Then if θL < π , the pulse attenuates with increasing travel
distance x. If π < θL < 3π , the pulse will evolve into a
stable hyperbolic secant pulse of area 2π and pass through the
medium without attenuation. Pulses with area above 3π will
be unstable and breaks into multiple pulses as they propagate.

To simulate SIT, we remove the cutoff mode from the
Maxwell-Bloch equations (since no such mode exists in
ordinary vacuum), set EL2 = 0, EL1 = EL, γ+ = γ− � 1/τ

(τ being the input pulse duration), �AL = 0, and σA � 1/τ .
This reduces our system to a one-dimensional, resonant pulse
propagation problem inside an inhomogeneously broadened
two-level medium in ordinary vacuum. The Bloch vector of
each single QD satisfies Bloch equation (9). Figure 4 shows
the simulation result of a 0.8π and a 1.4π pulse entering
the medium at x = 0 and propagating along the positive x

direction. The 0.8π pulse attenuates to eventually vanish at
about x = 10 μm as it propagates forward [Fig. 4(a)]. The plot
of average population inversion in the medium as function of
x and t [Fig. 4(c)] also confirms the gradual disappearance of
the pulse with increasing x. On the other hand, the 1.4π pulse
is reshaped along the way to a stable shape at about x = 5 μm
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FIG. 4. (Color online) Resonant pulse propagation in an inho-
mogeneously broadened two-level medium in ordinary vacuum. This
figure recaptures the SIT phenomena where a 0.8π pulse is gradually
absorbed during propagation, while a 1.4π pulse evolves into a
stable 2π pulse. vg = 0.2c, τ = 1 ps, γhigh = γlow = γp = 0, n =
2 × 105 μm−3, μ = 3.33 × 10−22 μm C (100 D), �AL = 0, σA =
5 THz (corresponding to 12 THz of distribution width at full-width
half-maximum, or about 1% for QD transitions centered at 1.5 μm),
Nσ = 3, NA = 20, ρ0 = (0,0, − 1). (a) and (b) Evolution of 0.8π and
1.4π pulse amplitudes (Rabi frequencies), respectively. (c) and (d)
Evolution of average population inversion of the two-level medium
during passage of 0.8π and 1.4π pulses, respectively.
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and keeps propagating forward without attenuation [Fig. 4(b)].
There are a several parameters for the QD medium and the
host photonic-crystal waveguides, including n, μ, vg , and γ±,
that determine this spatial length scale. This will be further
discussed in Sec. III E. The corresponding average population
plot [Fig. 4(d)] shows the area of the stable pulse established
indeed has an area of 2π as w returns to the initial ground
state after the pulse passage. This confirms that our numerical
scheme recaptures SIT for an appropriate choice of parameters.

B. Pulse propagation inside an ultrafast all-optical switch

Now we apply our numerical scheme to simulate pulse
propagation inside an all-optical switching device based on
embedded QDs inside a PBG waveguide [13,14]. The pulse
propagates along the linear dispersion mode of a bimodal
PBG waveguide with LDOS discontinuity caused by the cutoff
mode.

We consider electromagnetic wave propagation along the
direction of the waveguide x only, without detailed treatment
of the cross sectional distributions in the y and z directions.
As stated earlier, we assume uniform field distribution along
the cross-sectional directions of the waveguide. As such,
in the envelope equations (24) and (25), we abstract mode
characteristics most influential on wave propagation along
the waveguide. We model dispersion relations directly and
ignore details of the spatial mode structure, determined by
the microscopic dielectric architecture. Nonetheless, to make
our simulation more realistic, we estimate major parameters
for the envelope equations (24) and (25) and Bloch equations
(9) or (12) from a microscopically designed 2D-3D PBG het-
erostructure waveguide [16] that exhibits bimodal waveguide
dispersion curves matching our model. This structure has also
been studied earlier [13,14] to conceptually illustrate operation
of a picosecond all-optical switching device.

The PBG waveguide structure presented in Ref. [16] was ex-
tensively studied using finite difference time domain (FDTD)
simulations. This 3D-2D photonic-crystal heterostructure is
composed of inverse square spiral structures as the 3D cladding
layers and a square lattice of cylindrical rods comprising
comprising the 2D microchip layer. Figure 3 of Ref. [16]
shows the existence of two waveguide modes, one with linear
dispersion and one cutoff mode, for a W3 waveguide within
the PBG of this heterostructure.

The carrier frequency ωL of the control pulse propagating
in the linear dispersion mode is chosen to correspond to the
vacuum wavelength of λ = 1.5 μm so that ωL = 2πc/λ =
1256.64 THz. Then for ωL to appear near the cutoff frequency
ωC at the middle of the on-chip PBG shown in Fig. 3(b) of
Ref. [16], a lattice constant of a ≈ 0.555 μm is required. This
allows us to determine kL ≈ 0.33 × 2π/a = 3.74 μm−1 and
kC ≈ π/a = 5.66 μm−1 according to the dispersion curves in
Fig. 3(b) of Ref. [16].

The group velocity of the linear dispersion mode at
the cutoff frequency is about vg = 0.24c with c being the
vacuum speed of light. According to Eq. (A1) we model
light propagation in this linear dispersion mode as that in a
homogeneous medium with an effective dielectric constant
determined from the group velocity ε = (c/vg)2 ≈ 17.36. We

0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
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0.352

0.354

0.356

0.358

ka/2π

ω
a/

2π
c

FIG. 5. (Color online) Quadratic fitting (dashed line) of the cutoff
mode dispersion curve (solid line) near the cutoff frequency for the
W3 waveguide specified in Fig. 3(b) of Ref. [16]. The dimensionless
coefficient of the quadratic term from the fitting is B0 = 0.7546.
For a laser beam operating around 1.5 μm with a ≈ 0.555 μm, this
corresponds to B = B0ac/(2π ) ≈ 20 μm2 ps−1.

estimate the average dielectric constant ε in Eq. (25) to be half
of ε.

One of the key parameters for the cutoff mode in Eq. (25) is
the quadratic coefficient B of the dispersion curve. As shown
in Fig. 5, this is estimated to be B = 20 μm2 ps−1 through
a quadratic fitting of the cutoff dispersion curve shown in
Fig. 3(b) of Ref. [16]. Due to finite length in real waveguide
structures, the divergence of the cutoff mode LDOS peak is
truncated, resulting in a finite FWHM of the peak. This effect
is modeled as the linear loss rate �C in Eq. (25). For a 15 unit
cell long waveguide, �C = 1.88 THz [13,14].

As a simulation of all-optical switching, Fig. 6 shows the
spatial evolution of various picosecond Gaussian input pulses
as they propagate along the waveguide with different initial QD
average populations w(0). The probe pulse is sent in (beginning
of probe simulation) immediately after the end of the control
pulse simulation. Then according to Figs. 6(a) and 6(c), the
temporal separation between the control and probe pulse peaks
is 4.5 ps. The initial spatial population profile of the probe
pulse is set to be the residual population profile of the control
pulse. The evolution profiles of the QD population w under
each of the situations in Fig. 6, as well as field emitted from
the driven dots into the cutoff mode, are shown in Figs. 7 and
8, respectively.

A properly configured red-shifted control pulse can invert
the QD medium [Figs. 6(a), 7(a), and 8(a)], thus allowing
a subsequent resonant probe pulse to pass through the
waveguide without attenuation [Figs. 6(c), 7(c), and 8(c)].
Figure 6(a) shows the evolution of the red-shifted control pulse
propagating through the waveguide with the embedded QDs
initially below inversion w(0) = −0.5. The (red) thick and
(blue) thin lines represent the real and imaginary parts of the
pulse envelope function, respectively. The parameters used
during simulation are detailed in the figure caption. As the
control pulse evolves along the waveguide, an imaginary part
of the envelope function emerges, reflecting a pulse phase shift.
However, the overall pulse retains its shape over a distance of

053848-8



OPTICAL PULSE DYNAMICS FOR QUANTUM-DOT LOGIC . . . PHYSICAL REVIEW A 84, 053848 (2011)

(a) (b)

0 5 10 15x m

1
0

1
2

3t ps

20
0

20
40
60Re L

Im L

THz

0 5 10 15x m

1
0

1
2 3t ps

20
0

20
40
60Re L

Im L

THz

(c) (d)

0 5 10 15x m

1
0

1
2 3t ps

0.0
0.5
1.0

Re p

Im p

THz
0 5 10 15x m

1
0

1
2 3t ps

0.0
0.5
1.0

Re p

Im p

THz

FIG. 6. (Color online) Simulated evolution of control or signal
laser pulses along the waveguide inside an all-optical switching
device. This figure shows that a red-shifted control pulse can allow a
subsequent probe pulse to pass through without attenuation, while a
blue-shifted control pulse can lead to absorbtion of a subsequent probe
pulse. Thick (red) lines represent the real part of the pulse envelope
functions, and thin (blue) lines represent the imaginary part of the
envelope functions. vg = 0.24c, τ = 1 ps, �C = 1.88 THz, �L =
2 THz, B = 20 μm2 ps−1, γhigh = 2.5 THz, γlow = 5 GHz, γp =
0.5 THz, n = 2 × 105 μm−3, σA = 5 THz (about 1% for QD
transitions centered at 1.5 μm), Nσ = 4, NA = 20. (a) Dynamic in-
version by red-shifted control pulse. εmax

L = 42 THz, δωC = −5 THz,
�AL = 8 THz, ρ0 = (0,0, − 0.5). (b) Dynamic deexcitation by
blue-shifted control pulse. εmax

L = 42 THz, δωC = −21 THz,
�AL = −8 THz, ρ0 = (0,0,0.2). (c) Probe pulse propagation after
QD inversion. εmax

p = 1.18 THz, δωC = −13 THz, �AL = 0. The
initial average population is set to equal the final population in (a).
(d) Probe pulse propagation after QD deexcitation. εmax

p = 1.18 THz,

δωC = −13 THz, �AL = 0. The initial average population is set to
equal the final population in (b).

10–15 μm along the waveguide. Upon passage of this control
pulse, the embedded QDs are mostly inverted into an active
medium due to the structured vacuum [13,14]. This is seen
from the average QD population w in Fig. 7(a). Although
the final inversion level is nonuniform along the waveguide
(due to control pulse shape changes during the propagation),
the majority of the QDs remain excited with w > 0. During
the pulse passage along the linear dispersion mode, the QDs
driven by the control pulse also radiate into the cutoff mode
whose envelop function is shown in Fig. 8(a). The magnitude
of the radiated field in the cutoff mode is much weaker than
the input pulse in the linear dispersion mode. This is consistent
with our assumption in obtaining the Bloch equation (9).

A resonant probe pulse sent after QDs inversion by the red-
shifted control pulse can get amplified along the waveguide,
as shown in Fig. 6(c). The energy is transferred from the QDs
to the probe pulse, leaving the QDs at a lower excitation state
after probe pulse passage, as seen in Fig. 7(c). The probe pulse
is not significantly distorted over the 10–15 μm distance along
the waveguide. The field emitted into the cutoff mode during
passage of the probe pulse is also significantly weaker than
the probe pulse itself, consistent with our assumption in Bloch
equation (9).
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FIG. 7. (Color online) Simulated evolution of average QD pop-
ulation w(x,t) along the waveguide inside an all-optical switching
device. Each graph shows QD population under the corresponding
cases shown in Fig. 6, with the same parameters. This figure shows
that (a) a red-shifted control pulse can invert the QD population, and
(c) the inverted QDs are deexcited by the subsequent probe pulse. On
the other hand, (b) a blue-shifted control pulse can deexcite the QD
population, and (d) the resulted passive medium absorbs energy from
the subsequent probe pulse.

On the other hand, a properly configured blue-shifted
control pulse deexcites the QD medium [Figs. 6(b), 7(b),
and 8(b)], leading to absorption of a subsequent resonant
probe pulse [Figs. 6(d), 7(d), and 8(d)]. Figure 6(b) shows
the evolution of the blue-shifted control pulse propagating
through the waveguide with the embedded QDs initially above
inversion w(0) = 0.2. Similar to the red-shifted pulse, the
envelope function of the blue-shifted control pulse also picks
up an imaginary part as the pulse propagates through the
waveguide. Overall, the pulse also keeps its shape over a
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FIG. 8. (Color online) Simulated QD radiation into the cutoff
mode along the waveguide during each of the corresponding all-
optical switching actions shown in Fig. 6, with the same parameters.
The radiated field strength is much weaker than that of the input
control and signal pulses in the linear mode. Thick (red) lines
represent the real part of the pulse envelope functions, and thin (blue)
lines represent the imaginary part of the envelope functions.
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distance of 10–15 μm along the waveguide. Upon passage
of this control pulse, the embedded QDs are deexcited into a
passive medium [13,14], as can be seen from the w evolution
plot in Fig. 7(b) for QDs at different locations along the
waveguide. The QD radiation field into the cutoff mode during
the pulse passage is shown in Fig. 8(b). Its magnitude is also
much weaker than that of the input pulse in the linear dispersion
mode, consistent with assumption in the Bloch equation (9).

Although a resonant probe pulse sent after the red-shifted
pulse can pass through the waveguide without attenuation, the
same probe pulse sent after the blue-shifted control pulse is
absorbed by the QDs, as is shown in Fig. 6(d). The energy
is transferred from the probe pulse to the QDs, leaving the
QDs at a higher excitation state after probe pulse passage, as
seen in Fig. 7(d). The probe pulse is largely absorbed over
the 10–15 μm distance along the waveguide. The field emitted
into the cutoff mode during passage of the probe pulse, shown
in Fig. 8(d), is also significantly weaker than the probe pulse
itself, consistent with assumption.

C. Pulse propagation inside all-optical logic devices

As demonstrated in Ref. [15], a weaker signal pulse ES ,
acting simultaneously with EL in the previously simulated
switching system, can significantly increase the flexibility in
controlling QD excitations to provide a complete set of all-
optical logic operations. In this section we simulate these logic
operations. In this configuration, the strong pulse EL in the EL1

channel can be viewed as the holding field, while the signal
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FIG. 9. (Color online) Simulated NOT gate output as 1 (probe
pulse transmitted) with input of 0 (no signal pulse). vg = 0.24c,
τ = 5 ps, �C = 1.88 THz, �L = 4 THz, B = 20 μm2 ps−1, γhigh =
2.5 THz, γlow = 5 GHz, γp = 0.1 THz, n = 105 μm−3, σA = 5 THz
(about 1% for QD transitions centered at 1.5 μm), Nσ = 4, NA =
20, εmax

h = 20 THz, εmax
S = 0, δωC = −4 THz, δωS = ωS − ωh =

23 THz, �AL = 11 THz, ρ0 = (0,0, − 1). (a) The holding pulse
envelope function decays slowly over distance with gradual phase
shift (imaginary part of the envelope function). (b) No input
signal pulse envelope function, but there are minor QD radiations
accumulated in the signal channel. (c) The QD average population
is excited above inversion by the input holding pulse. (d) Due to the
excited QD medium, a subsequent probe pulse passes through the
waveguide with little attenuation.

field ES propagates in the EL2 channel of the linear dispersion
mode. Therefore we will denote EL1 = Eh and EL2 = ES in
this section, and replace all subscripts and superscripts of L1

and L2 with h and S, respectively. In all the simulation results
presented below, the probe pulse is sent in (beginning of probe
simulation) immediately after the holding and signal pulse
simulation. The temporal separation between the peaks of the
holding and signal pulses and the probe pulse is 16.5 ps.

Figures 9 and 10 show simulations of a NOT gate operation.
In a logic NOT operation, the output is the opposite of the
input. A NOT gate has only one input and one output. The
implementation of an all-optical NOT operation in Figs. 9 and
10 includes a channel of strong, red-shifted optical holding
pulses with �Ah > 0, and a simultaneous, weaker signal pulse
channel ωS nearly resonant with the right Mollow sideband
of the holding pulse. The channel of optical information at
carrier frequency ωS passes through the quantum dot at the
same time as the holding pulses at carrier frequency ωh. As
shown in Fig. 9, when the signal is not present (input 0),
dynamic inversion results in final inverted states (excited) of
the quantum dots along the waveguide [Fig. 9(c)], whereas
when the signal is present (input 1), the final population
becomes negative (deexcited) as shown in Fig. 10(c). The
excited quantum dots will allow the passage of the subsequent
probe pulse (defined as output 1) near the dot transition
frequency ωA [Fig. 9(d)], whereas the deexcited quantum dots
will absorb and forbid the passage of the probe pulse (defined
as output 0) [Fig. 10(d)]. As a result, an optical input of 0
in frequency channel ωS leads to an optical output of 1 in
frequency channel ωA, and vice versa.
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FIG. 10. (Color online) Simulated NOT gate output as 0 (probe
pulse attenuated) with input of 1 (presence of a signal pulse).
εmax
S = εmax

h /3, and all other parameters are the same as Fig. 9. (a)
The holding pulse envelope function decays slowly over distance
with gradual appearance of high frequency components and phase
shift (imaginary part of the envelope function). (b) One input signal
pulse envelope function gradually decays over distance with gradual
appearance of high frequency components and phase shift. (c) The QD
average population is deexcited by the input holding and signal pulses.
(d) Due to the deexcited QD medium, a subsequent probe pulse
attenuates over distance and cannot pass through the waveguide.
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FIG. 11. (Color online) Simulated AND gate output of 0 (probe
pulse attenuated) with input of (0,0) (no signal pulses). vg = 0.24c,
τ = 5 ps, �C = 1.88 THz, �L = 4 THZ, B = 20 μm2 ps−1, γhigh =
2.5 THz, γlow = 5 GHz, γp = 0.1 THz, n = 105 μm−3, σA = 5 THz
(about 1% for QD transitions centered at 1.5 μm), Nσ = 4, NA =
20, εmax

h = 16 THz, εmax
S = 0 × 2.26 = 0 THz, δωC = −13.5 THz,

δωS = ωS − ωh = −12.5 THz, �AL = −6 THz, ρ0 = (0,0, − 1).
(a) The holding pulse envelope function decays slowly over distance
with gradual phase shift (imaginary part of the envelope function).
(b) No input signal pulse envelope function, but there are significant
QD radiations accumulated in the signal channel. (c) The QD average
population is deexcited by the input holding pulse. (d) Due to the
deexcited QD medium, a subsequent probe pulse attenuates over
distance and cannot pass through the waveguide.

A reasonable switching contrast of the probe pulse is
reached at a waveguide length scale 10 μm. The factors
determining this length scale will be further discussed in
Sec. III E. Below this length scale, the deexcited quantum
dots do not have enough distance to absorb the probe pulse in
Fig. 10(d). Above this length scale, the holding pulse does not
have enough power to invert the quantum dots [apparent from
attenuation of the holding pulse in Fig. 9(a) and deterioration of
inversion level in Fig. 9(c) as pulse travel distance increases].
Accordingly, the probe pulse amplitude starts to decrease
over distance [Fig. 9(d)]. Also, the holding and signal pulses
gradually pick up higher frequency components (Fig. 10)
over distance, accompanied with imaginary components of
the pulse envelop functions. However, the pulse shapes are
generally preserved within the 10 μm length scale.

Figures 11 to 13 and Figs. 14 to 16 demonstrate all-optical
AND gate and OR gate operations, respectively. In a logic AND

operation, the output is positive only if both of the two inputs
are positive, whereas a logic OR operation results in the output
being positive if either of the two inputs is positive. These two
logic operations can be realized with two streams of optical
information at frequency ωS passing through the quantum dots
at the same time as the strong holding pulse at ωh with �Ah <

0. The signal pulse frequency ωS is near resonant with the left
Mollow side band of the holding pulse [15]. Depending on the
relative strengths of the holding and signal pulses, the proposed
device can perform either logic AND or OR operations.

For a relatively large εh, the final inversion increases
monotonically with εs . This can be utilized to perform logic
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FIG. 12. (Color online) Simulated AND gate output of 0 (probe
pulse attenuated) with input of (0,1) (one signal pulse). εmax

S =
2.26 THz, and all other parameters are the same as Fig. 11.
(a) The holding pulse envelope function decays slowly over distance
with gradual appearance of high frequency components and phase
shift. (b) One input signal pulse envelope function propagates
with gradual appearance of significant high frequency components.
(c) The QD average population is deexcited by the input holding and
signal pulses. (d) Due to the deexcited QD medium, a subsequent
probe pulse attenuates over distance and cannot pass through the
waveguide.

AND operations, where only the addition of two signal pulses
[input (1,1)] is strong enough to switch the population to
positive inversion [Fig. 13(c)], while inputs of (0,0) [Fig. 11(c)]
and (0,1) [Fig. 12(c)] all result in final populations below
inversion. As a result, a subsequent probe pulse εp can
only pass through the waveguide after input signals of (1,1)
[Fig. 13(d)], but will be attenuated after inputs of (0,0) and
(0,1) [Figs. 11(d) and 12(d), respectively].

On the other hand, for a relatively small εh, the final
inversion easily reaches saturation with increasing εS . This can
be utilized to perform logic OR operations, where the presence
of both or either signal(s) [input (1,1) or (0,1)] are enough
to switch the population to positive inversion [Figs. 16(c)
and 15(c)], while inputs of (0,0) [Fig. 14(c)] results in final
populations below inversion. As a result, a subsequent probe
pulse εp can pass through the waveguide after input signals
of either (1,1) [Fig. 16(d)] or (0,1) [Fig. 15(d)], but will be
attenuated after inputs of (0,0) [Fig. 14(d)].

Similar to the NOT gate, a satisfactory transmission contrast
of the probe pulse can be realized on the 10 μm length scale for
the AND and OR gates. The holding pulses and signal pulses
also pick up high frequency and imaginary components as
they travel along the waveguide. The phase shift (appearance
of imaginary part for the pulse envelope functions) is not very
pronounced after propagating for 10 μm, since it remain well
below π/4 (imaginary part much less than the real part) in most
cases. The high frequency components, on the other hand,
require much more attention. A comparison from Fig. 9 to
Fig. 16 implies that the high frequency components may arise
from crosstalk between the holding pulse channel and the
signal pulse channel, due to their coupling to the common
QD polarization field. The accumulation of high frequency
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components in one channel depends on the presence of pulses
in the other channel. It always occurs in the signal channel
(holding pulse is always present), whereas it only occurs in
the holding pulse channel when the input signal is not 0. Since
the holding pulse is always much stronger than the signal
pulses, the high frequency components remain less than an
order of magnitudes weaker than the holding pulse itself after
propagating for 10 μm. However, high frequency noise can
be much more significant in the signal channel, sometimes
entirely distorting the input signal [Figs. 11(b) to 15(b)]. This
may require correction in a practical device design.

D. Probe pulse soliton formation

We have shown that a resonant probe pulse will pass
through the waveguide without attenuation, following the QD
excitation by a red-shifted control pulse in our all-optical
switch [Fig. 6(c)]. Here we consider the further evolution of
the probe pulse over distances much longer than the proposed
10 μm device length.

Provided the probe pulse is not strong enough to push the
Mollow sidebands into the high LDOS region, pulse trans-
mission and reshaping is equivalent to that of an amplifying
medium in ordinary vacuum [27,28]. In this case [28], if
the probe pulse continues propagating along the active QD
medium inside the waveguide, then it is possible for the pulse to
evolve into a stable π pulse soliton. This assumes the presence
of a broadband background linear loss for the waveguide linear
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FIG. 13. (Color online) Simulated AND gate output of 1 (probe
pulse transmitted) with input of (1,1) (two signal pulses). εmax

S =
2 × 2.26 THz = 4.52 THz, and all other parameters are the same
as Fig. 11. (a) The holding pulse envelope function decays slowly
over distance with gradual appearance of high frequency components
and phase shift. (b) Two input signal pulse envelope functions
(added together) propagate with gradual appearance of significant
high frequency components. (c) The QD average population get
excited barely above inversion by the input holding and signal pulses.
(d) Due to the barely excited QD medium, a subsequent probe pulse
pass through the waveguide with some attenuation. The probe pulse
output contrast between the on and off [Figs. 11(d) and 12(d)] states
is not as good as that for the NOT gate, but still distinguishable. This
is due to the low inversion level achieved here.
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FIG. 14. (Color online) Simulated OR gate output of 0 (probe
pulse attenuated) with input of (0,0) (no signal pulses). vg = 0.24c,
τ = 5 ps, �C = 1.88 THz, �L = 4 THz, B = 20 μm2 ps−1, γhigh =
2.5 THz, γlow = 5 GHz, γp = 0.1 THz, n = 105 μm−3, σA = 5 THz
(about 1% for QD transitions centered at 1.5 μm), Nσ = 4, NA =
20, εmax

h = 10.5 THz, εmax
S = 0 × 2.26 THz = 0δωC = −13.5 THz,

δωS = ωS − ωh = −12.5 THz, �AL = −6 THz, ρ0 = (0,0, − 1).
(a) The holding pulse envelope function decays slowly over distance
with gradual phase shift. (b) No input signal pulse envelope function,
but there is significant QD radiation accumulated in the signal
channel. (c) The QD average population is deexcited by the input
holding pulse. (d) Due to the deexcited QD medium, a subsequent
probe pulse attenuates over distance and cannot pass through the
waveguide.

dispersion mode. We confirm this soliton formation through
the numerical simulation of our Maxwell-Bloch equations.

Figure 17(a) shows the formation of a probe pulse soliton,
assuming a uniformly excited QD medium with w(0) = 0.2
(in practice it is difficult to obtain uniform excitation over
such an extended distance). All parameters are kept the same
as Fig. 6. The probe pulse is reshaped gradually into a
π pulse soliton [the soliton area is confirmed by the fact
that w reverses sign in a half circle of the Bloch vector
rotation without additional oscillations, as shown in Fig. 17(b)]
after propagating approximately 300 μm inside the active QD
medium. It then continues propagation without distortion.
Slight loss of energy is observed after the soliton formation,
due to the small radiative decay rate γlow = 5 GHz in the low
LDOS region. This is not due to the background linear loss
rate �L. This simulation demonstrates that the typical (10 μm)
length of our proposed switching device is insufficient for
stable soliton formation.

E. Discussion

Our simulation parameters are estimated based on the 15
unit cell 2D-3D PBG heterostructure waveguide in Ref. [16].
The length of the active region is about 9 μm for light at
1.5 μm, with a 600 nm unit cell length [16]. Our simulation
results demonstrate that satisfactory picosecond probe pulse
switching and logic operation contrasts are achieved within
this length scale, over which the control and holding pulses
and signal pulses do not suffer significant distortion. Our study
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demonstrates that picosecond all-optical switching and all-
optical logic is theoretically achievable on a 10 μm length scale
in a PBG waveguide through Bloch dynamics of embedded
quantum dots.

According to Eqs. (9), (12), (24), and (25), several input
parameters determine the required active waveguide length
xwaveguide to produce satisfactory optical switching contrasts of
the probe pulse. The most important are those characterizing
the embedded QD medium. Increasing the quantum dot
number density n and using QDs with larger dipole μ would
increase the radiation source terms of both envelop equations,
enhancing their radiative reaction for pulse reshaping. Further-
more, larger dipole per dot leads to stronger QD-field coupling
(larger Rabi frequencies for given field strength), enabling
larger QD population switching contrast [13,14]. These effects
lead to shorter device length for producing the required optical
switching and logic contrast.

Another important factor influencing output contrast is the
host photonic-crystal waveguide geometry, and the resulting
dispersion curves. For the linear dispersion mode, a lower
group velocity vg spatially compresses the pulse, leading to
larger peak field strength with a given amount of energy per
pulse. This enables larger QD population switching contrast
(slow light enhancement of nonlinear effect). This should
more than compensate the reduction in the source term in
Eq. (24) caused by smaller group velocity. For the cutoff mode
(responsible for providing the density of state discontinuity),
achieving a larger LDOS within a limited waveguide length is
critical for maximizing QD population switching contrast.

From the above discussion, the required active waveguide
length scale is inversely proportional to the polarization en-
hancement effect of n and μ [Lwaveguide ∝ 1/(nμ)]. However,
the dependence of Lwaveguide on the QD population switching
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FIG. 15. (Color online) Simulated OR gate output of 1 (probe
pulse transmitted) with input of (0,1) (one signal pulse). εmax

S =
2.26 THz, and all other parameters are the same as Fig. 14. (a)
The holding pulse envelope function decays slowly over distance
with gradual phase shift and high frequency components. (c) The
QD average population is excited barely above inversion by the input
holding and signal pulses. (d) Due to the barely excited QD medium,
a subsequent probe pulse passes through the waveguide with some
attenuation.
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FIG. 16. (Color online) Simulated OR gate output of 1 (probe
pulse transmitted) with input of (1,1) (two signal pulses). εmax

S =
2 × 2.26 THz = 4.52 THz, and all other parameters are the same as
Fig. 14. (a) The holding pulse envelope function decays slowly over
distance with gradual appearance of high frequency components and
phase shift. (b) Two input signal pulse envelope functions (added
together) propagate with gradual appearance of significant high
frequency components. (c) The QD average population is excited
barely above inversion by the input holding and signal pulses. (d) Due
to the barely excited QD medium, a subsequent probe pulse passes
through the waveguide with some attenuation. The probe pulse output
contrast between the on and off [Fig. 11(d)] states is not as good as
that for the NOT gate, but still distinguishable. This is due to the low
inversion level achieved here.

contrast enhancement effects from μ, vg , and γ−/γ+ is harder
to quantify through simple analytical expressions, due to the
highly nonlinear nature of the switching mechanism. In general
a shorter active waveguide length is sufficient with larger
dipole μ, smaller group velocity vg , and larger LDOS jump
contrast γ−/γ+.

The energy per pulse for all-optical switching applications
has been estimated to be as little as 1.6 fJ under specific
assumptions of the waveguide cross-sectional geometry, field
distribution, and group velocity [14]. However, the required
active waveguide length scale as discussed above is indepen-
dent of the cross-section areas in our model. Although a larger
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FIG. 17. (Color online) Evolution of the probe pulse into a π pulse
soliton when propagating long enough inside the active QD medium
already excited by the red-shifted control pulse. The initial population
is set to w(0) = 0.2, and all other parameters are the same as Fig. 6.
(a) Evolution of the pulse envelope function. The input pulse starts at
x = 0 with area π , and gets reshaped over distance until reaching a
stable shape and group velocity, at around x = 300 μm. (b) Evolution
of the QD average population.
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cross-section area could mean more QDs being embedded
with a given number density n, it also leads to scaled increase
in energies per pulse to be absorbed by the active QDs.
Under our uniform field and QD distribution assumption in
the cross-sectional direction, it is the QD number density n,
instead of the absolute number of QDs, that enters our envelope
equations governing the pulse propagation. However, in reality
the actual cross-sectional field and QD distribution, as well as
the overlap between the two, is a critical issue to be addressed
when designing practical waveguide structures for all-optical
information processing applications.

IV. CONCLUSION

In summary, we have developed a coupled Maxwell-
Bloch theory in the slowly varying envelope approximation
for simulation of optical pulse propagation inside ultrafast
all-optical switching and logic devices. This is based on
a bimodal PC waveguide embedded with two-level QDs.
Instead of full simulation of Maxwell’s equation involving
microscopic details of PBG waveguide architecture in 3D, we
abstract the key properties of the waveguide to simplify the
electromagnetic modeling. Using mode parameters extracted
from a realistic 2D-3D PBG heterostructure waveguide [16],
we have demonstrated picosecond all-optical switching and
logic devices on a 10 μ m length scale. The switching con-
trasts generally deteriorates with increasing inhomogeneous
broadening, but is still satisfactory at the 1% level (for QD
transitions centered at 1.5 μm) as shown in our simulation
results.

The switching contrast of the QD populations (and hence
the probe pulse contrast) could be further improved if we
take into account stimulated emission and coherent feedback
effects coming from a finite band of radiation into the cutoff
mode [19]. This effect is not captured in our model because
the envelop equation of the cutoff mode [Eq. (25)] only
describes a very narrow frequency range in the immediate
vicinity of the cutoff frequency. The full FDTD simulation
of Ref. [19] demonstrates remarkable high-contrast QD
population switching with relatively modest (factor of 10)
jump discontinuities in the electromagnetic LDOS. Non-
Markovian radiative feedback effects of this nature could
enable subpicosecond switching and logic to be realized even
in 2D photonic-crystal waveguides or in active waveguide
segments less than 10 μm in length.

A more detailed microscopic understanding of dephasing
and nonradiative decay of excited quantum dots may be
required to determine the minimum time scale between logic
operations. Such damping effects are needed to erase memory
of a previous logic operation prior to a new one being
performed.
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APPENDIX A: ENVELOPE EQUATION OF THE LINEAR
DISPERSION MODE

The waveguide mode for the input laser pulse has approx-
imately linear dispersion. This dispersion can be character-
ized by the group velocity vg at which the pulse envelope
ẼL1,L2 (x,t) travels, and the phase velocity ωL1,L2/kL1,L2 at
which the carrier optical phase e−i(ωL1 ,L2 t−kL1 ,L2 x) imposed on
ẼL1,L2 (x,t) travels. We model the movement of the enve-
lope function ẼL1,L2 (x,t) through an effective homogeneous
medium whose dielectric constant ε is defined through the
group velocity (slope of the dispersion curve):

vg = c/
√

ε. (A1)

An electromagnetic pulse propagating through this effective
medium will have the following form:

Eeff = ẼL1,L2e
−i[ωL1 ,L2 t−(ωL1 ,L2 /vg )x]. (A2)

Accordingly the polarization takes the form

Peff = μn
(〈
σ̃

L1,L2
12

〉
e−i[ωL1 ,L2 t−(ωL1 ,L2 /vg )x] + c.c.

)
. (A3)

Eeff obeys the following Maxwell’s equation:

∂2Eeff

∂x2
− ε

c2

∂2Eeff

∂t2
= 4π

c2

∂2Peff

∂t2
. (A4)

To simplify notations, in the following, we use subscript
L to denote both subscript L1 and L2 for the first and second
linear dispersion mode. To derive the envelope equation for
Ẽ(x,t), we assume Ẽ(x,t) is slowly varying both temporally
on the ω−1

L time scale and spatially on the max(ωL/vg,kL)−1

length scale. Under these assumptions, substituting Eqs. (A1),
(A2), and (A3) into Eq. (A4), and by making the slowly varying
envelope approximations, we obtain the following envelope
equation:

∂ẼL

∂x
+ 1

vg

∂ẼL

∂t
= 2iπμnωLvg

c2

〈
σ̃ L

12

〉
. (A5)

Furthermore, we use a linear broad band loss rate �L to
describe either additional absorption losses or decay of the
optical mode from a finite segment of the PBG waveguide. By
including this linear loss term into the envelope Eq. (A5) we
obtain Eq. (18).

APPENDIX B: POLARIZATION ENVELOP IN THE FRAME
OF THE CUTOFF MODE

In deriving the equation of motion for ẼC(x,t), we write P

in a way different from Eq. (15):

P (x,t) = μn(〈σ12〉avg + c.c.)

= μn
[〈
σ̃ C

12

〉
(e−i(ωCt−kcx) + e−i(ωCt+kCx)) + c.c.

]
.

(B1)

Now 〈σ̃ C
12〉 is the envelope function of the average QD dipole

expectation value 〈σ12〉avg in the frame of the cutoff mode
e−i(ωCt−kcx) + e−i(ωCt+kCx). As is the case for 〈σ̃ L1

12 〉, 〈σ̃ C
12〉 also

encompasses all the frequency components of the QD dipole.
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From Eqs. (15) and (B1) we have

Re
[〈
σ̃ C

12

〉(
e−i(ωCt−kcx) + e−i(ωCt+kCx))]=Re

(〈
σ̃

L1
12

〉
e−i(ωL1 t−kL1 x)).

(B2)

For physical problems, the imaginary parts of
〈σ̃ C

12〉(e−i(ωCt−kcx) + e−i(ωCt+kCx)) and 〈σ̃ L1
12 〉e−i(ωL1 t−kL1 x)

are irrelevant, because they are canceled out by their

complex conjugates and do not contribute to the
polarization function. This gives us the freedom to impose a
condition:

Im
[〈
σ̃ C

12

〉
(e−i(ωCt−kcx) + e−i(ωCt+kCx))

]= Im
(〈
σ̃

L1
12

〉
e−i(ωL1 t−kL1 x)

)
.

(B3)

Equations (16), (B2), and (B3) together imply Eq. (23).
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